Total Protein Stain as an Internal Loading Control

Normalization Webinar InvitationFor more information on Western blot normalization, watch these webinars:


Using a total protein stain to detect the total protein in each lane of your gel or blot is becoming more popular. Total protein staining is a direct measure of the total amount of sample protein in each lane. For each lane, the sum of all the signal intensities of all the proteins in the lane is used for normalization.

This more direct approach may increase the accuracy of normalization. Unlike housekeeping proteins, total protein staining does not require validation for each experimental context.

A total protein stain should produce a linear increase in signal intensity in response to increasing protein concentration. It should also correct for variation at all points in the Western blot process, including gel loading and transfer to membrane. It must be compatible with downstream immunodetection of your blot. You should make sure that the signal intensity of the total protein stain is moderate, without saturation or low signal-to-noise ratios.

REVERT™ Total Protein Stain provides linear, proportional signal across a broad range of sample concentrations.

REVERT Total Protein Stain

Learn more about total protein controls in the full paper on normalization: Western Blot Normalization: Challenges and Considerations for Quantitative Analysis

Signaling Proteins as Internal Loading Controls

Normalization Webinar InvitationFor more information on Western blot normalization, watch these webinars:


Besides housekeeping proteins and total protein controls, signaling proteins are another option for normalization. This approach is particularly useful for relative analysis of post-translational modifications such as phosphorylation. The method combines two primary antibodies raised in different hosts: a phospho-specific antibody (or other modification-specific antibody) and a pan-specific antibody that recognizes the target protein regardless of its modification state. Fluorescently-labeled secondary antibodies are used to simultaneously detect and discriminate the two signals with digital imaging. Phospho-signal is then normalized against the total level of target protein, using the target protein as its own internal control.

This is a great strategy to use if you’re studying protein modifications. Bakkenist et al. examined the possibility of binding interference from combined phospho-specific and pan antibodies, but detected little or no effect.
signaling-protein
Advantages of Phospho-Analysis with Signaling Proteins:

  • You can detect both unmodified and modified forms of your target protein on the same blot, in the same lane.
  • No error is introduced by stripping and reprobing. Stripping and reprobing of blots can introduce detection artifacts and cause loss of blotted proteins from the membrane.
  • Accuracy is improved by correcting for loading and sampling error

Find out more about multiplex analysis using signaling proteins: Western Blot Normalization: Challenges and Considerations for Quantitative Analysis