Video Infographic: The Fall of Film and Its Effect on Your Western Blots

Watch the video below to see how the past 23 years have contributed to the volatility of the photographic film market, and to show why the availability of film for your Western blots may be at risk.


Solution – Switch to Digital Imaging for Chemiluminescent Western Blots


Solution – Switch to Infrared Detection and Quantitative Western Blots on LI-COR® Odyssey Imagers

Read our previous blog posts to find out the full story behind why the future of film for life science research may be in peril:

The Cost of Film Production May Give Us One Clue Why Film May Not Be Available for Western Blot Imaging in the Future?

Do you know which raw materials are required for producing photographic film? Or, how the changing prices of these goods affect your final cost as a consumer?

The raw materials for film production are some of the world’s most mined natural resources, and thus subject to swinging market prices. Let’s take a closer look at the layers of photographic film and the goods and processes that go into manufacturing the final product. But first, a question:


(See the bottom of this post for the answer. :-))

Here is an example of the layers you find in a typical photographic film – the kind you might use for developing Western blots in your lab.
Composition of Film
The top layer, the layer that reacts to light exposure, is the Photosensitive Emulsion Layer. This layer is dull and tacky, and is produced by dissolving silver bars in nitric acid to produce silver halide grains. These photosensitive grains are then suspended and bound in a gelatin solution made from animal hide and bones.

The middle layer, the Film Base, is smooth and shiny. There are three major types of film bases:

  • Cellulose nitrate,
  • Cellulose acetate, and
  • Polyester.

Cellulose nitrate is not commonly used because it is highly flammable. Acetate film was most commonly used between 1920 and 1970. But, because acetate base tends to deteriorate over time and with the invention of polyester, a move toward a new type of film was made in the 1950s. Polyester film, the type primarily used today, is composed from crude oil, or more specifically, petroleum byproducts.

The final layer is the Anti-Halation Layer. This layer prevents halo artifacts from refracted light and is composed of an opaque, heavy color dye. This layer is washed away during processing to reveal a transparent negative, which, in Western blotting, is the final data image.

Stay tuned for more information on how the prices of silver and crude oil affect the prices of film.

Related posts:

Answer to poll question: Yes, photographic film is composed of everything from petroleum to cellulose from animal byproducts. Did you guess correctly?.

What if Film Was No Longer Available? How Would You Capture Your Western Blot Images?

Photographic FilmFilm has been the dominant technology for capturing images for photographers, medical practitioners, and researchers for more than 250 years. Now it’s no longer the sole option. Digital technologies are beginning to impact the future of film. Here’s how and why:

  1. Digital technology is being widely adopted across many different fields including photography, medicine, and scientific research.
  2. The affordability and supply of film has been threatened with the increase of raw material and production costs.
  3. New rules and regulations have been passed in relation to global preservation and green movements.

Because of this, several prominent companies including Kodak and Fujifilm have reevaluated their business initiatives and made decisions regarding the manufacture of certain film-related products.

Get out of the DarkroomIn addition, many universities and institutions are reconsidering their rules and regulations for the disposal and use of hazardous wastes. In general, policies are being made more stringent and punishments for non-compliance more severe. In fact, many new research and medical buildings are being built without darkrooms or the equipment necessary to process film.

Being aware of how these issues, and others, affect the future of film is essential to being able to continue the same quality, or better quality work than you are producing now. Preparing for the future by considering alternative imaging options is becoming more and more essential—especially when processing film comes with additional expenditures and concerns, and requires protocols that rely on toxic chemicals and large amounts of water.

Our next blog post will show you how the cost of raw materials influences the availability and cost of film.

Related Posts:

  • What is the Future of Film Use for Western Blot Imaging?
  • The History of Film. What Does It Tell Us About The Future of Using Film for Western Blot Imaging?