Use Near-Infrared Fluorescent Probes for Pharmacokinetics and Biodistribution Studies

In Vivo Imaging with NIR Fluorescent ProbesNon-invasive preclinical imaging methods are critical for development of imaging agents and targeted therapeutics. Pharmacokinetics is the study of what the body does to a drug with respect to biodistribution and clearance. Traditionally-used radiolabeled probes have limitations such as cost, access, and safety. Near-infrared (NIR) fluorescence imaging offers a powerful alternative to radiolabeled probes for pharmacokinetics and biodistribution studies. NIR fluorescent optical imaging agents can be used to image the whole animal over time. And, more than one agent can be tracked in the same animal if each agent is labeled with a spectrally-distinct fluorophore.

In this webinar, Dr Amy Geschwender examines several case studies from the literature, and discusses:

  • Why NIR fluorescent probes are widely used for in vivo imaging
  • How fluorescence imaging of excised tissues and tissue sections is used to examine biodistribution in more detail
  • How to measure serum half-life and % injected dose per gram with NIR fluorescent probes


This webinar features data from the Pearl® Small Animal Imaging System, which was recently honored by Frost & Sullivan, in addition to advancements in NIR technology. Click here to learn more about this award.

Visit our website to learn more about BrightSite™ Optical Imaging Agents and IRDye® infrared dyes that can be used for your pharmacokinetic and biodistribution studies.

Create a Complete Molecular Imaging Workstation

pearltrilogybuildsystemCombining the Odyssey® CLx Infrared Imaging System with the Pearl® Small Animal Imaging System creates a versatile molecular imaging workstation for in vivo and in vitro imaging.

BrightSite™ Optical Imaging Agents or probes developed using IRDye® infrared dyes can be used for in vitro, in vivo, and tissue imaging. This technology offers researchers the ability to take research from the cell to the animal, all within one lab.

Odyssey CLx Infrared Imaging System Capabilities:

  • Cell-based assays (binding capacity, specificity, competition, etc.) for optical agent development
  • Histology and whole organ imaging for studying clearance and specificity
  • Simultaneous two-color detection for two targets or one target with sample normalization

Pearl Small Animal Imaging Capabilities:

Validation Workflow and Molecular Imaging WorkstationFigure 1. Validation and Use of an IRDye Fluorescent Probe. After probe labeling, in vitro cellular assays and microscopy are used to confirm specificity. The desired target is then imaged in animals. Excised organs and tissues> can be examined for more detailed localization of the probe. Animal image captured with Pearl Imaging System. A more comprehensive discussion of approaches for the development of fluorescent contrast agents has also been published. Reference: Kovar, et al. Anal Biochem 367(2007) 1-12.

Molecular imaging – achieved with near-infrared fluorescent technology from LI-COR!

New Tools for Cancer Surgeons: Targeted Fluorescent Imaging Probes

LI-COR interviewed Dr. Go van Dam, a surgeon specializing in oncology at the Groningen University Medical Center in the Netherlands.

A key focus of van Dam’s research is to explore new tools such as targeted fluorescent imaging probes that will help address the challenges facing oncology surgeons. He discusses his research using near-infrared fluorescent imaging during surgery to improve cancer patient outcomes. Watch an interview with Dr. van Dam.

Vasilis Ntziachristos, PhD,  Technische Universität München, Germany and Gooitzen M. van Dam, MD, PhD, University Medical Center Groningen, Netherlands presented “Shining New Light on Clinical Fluorescence Imaging” at World Molecular Congress in San Diego, CA in September 2011.