Monitor Protein Levels and Phosphorylation with Quantitative Multiplexed Western Blots

Molecular profiling reveals diversity of stress signal transduction cascades in highly penetrant Alzheimer’s disease human skin fibroblasts.

Mendonsa, G., et al. PLoS ONE 4(2): e4655. doi:10.1371/journal.pone.0004655

Aberrant signal transduction is associated with Alzheimer’s disease (AD). In skin fibroblasts of AD patients, exaggerated signal transduction occurs in response to bradykinin (BK), an inflammatory neuropeptide. BK-induced PKC signaling causes stimulation of tau phosphorylation on serine residues in AD fibroblasts, but not in normal skin fibroblasts. Quantitative Western blotting with multiplex fluorescent detection (Odyssey Imager; LI-COR Biosciences) was used to monitor protein levels and phosphorylation.

To explore the roles of inflammatory and oxidative stress in AD pathology, this study profiled the effects of these stresses on MAPK signaling cascades in human skin fibroblasts of familial AD patients. AD fibroblasts of different genetic origins express presenilin (PS-1 or PS-2) mutated at a variety of sites. These mutations caused diverse responses to stress induced by BK or H2O2, with unique profiles of stress-induced MAPK activation, caspase-3 cleavage, and survival pathway activation. These results indicate that AD research must consider a broad spectrum of inflammatory, oxidative, and other stress factors and intracellular signaling responses.
Reduced ERK activation in PS-1 (M146L) Alzheimer's disease fibroblasts stimulated with bradykinin.

Figure 1. Reduced ERK activation in PS-1 (M146L) Alzheimer’s disease fibroblasts stimulated with bradykinin (BK). These fibroblasts carry a mutation in presenilin-1 associated with aberrant signaling. Mutant and control human skin fibroblasts were treated with 250 nM BK and immunoblotted for active and total ERK. Odyssey Imager was used, and fold activation was quantified. Total ERK is shown in green, and phospho-ERK in red; overlapping signals (active ERK) are shown in yellow. ERK activation was greatly reduced in PS-1 (M146L) AD fibroblasts. Graphs show mean + S.E. *p < 0.05 and **p < 0.005; n = 4. doi:10.1371/journal.pone.0004655

In-Cell Western™ Assay Webinar – Applications Review

In-Cell Western Assays - Fluorescent ImmunoassaysFor those of you that like to watch videos and listen to information, here is a great webinar on In-Cell Western Assays.

In this In-Cell Western webinar, the basics of ICW assays are covered and these applications:

For more information on these plate-based fluorescent immunoassays, go to the In-Cell Western assay application page. There are also several sample protocols and information on how to set up, optimize, and analyze ICW assays.

Using Non-adherent Cells for Fluorescent Immunoassays – Tips for Successful In-Cell Western™ Assays

In-Cell Western Assays - Fluorescent Immunoassays

You might be wondering if this powerful technique called In-Cell Western Assay can be used for your cell line because your cell line is non-adherent. Well, you are in luck! You CAN use suspension cells for ICW Assays – with some care and optimization.

Here are a few frequently asked questions. (see my next few blogs for more FAQs on using suspension cells for In-Cell Western Assays).

  1. How do you make non-adherent cells (suspension cells) attach to plates?

  2. A simple trick is to replace your complete media containing 10% serum (usually fetal bovine serum) with the same media minus the serum. Then allow the cells to sediment, forming a monolayer of cells within 10 minutes. Caution: Although cells appear attached to the plates, they are relatively loosely attached and therefore, extreme caution is required during solution-changing steps.

  3. How do I know that I have a monolayer?
    Method #1
  4. – Examine cells in the round bottom 96-well plates under a light microscope. The center of the wells should all have a small flat circular surface area where all the cells in that field are “in focus”. Moving the plane of focus, up or down, will cause cells to be “off focus”.
    Method #2 – Hold the round bottom 96-well plate under a light source. The monolayer should look opaque rather than transparent. Cells will not attach on top of the cell monolayer, so the opaqueness is due only to the monolayer.

  5. I cannot get a monolayer of cells. I get lots of spaces between cells. Is seeding 200,000 cells/well enough?
    Seeding 200,000 cells/well is more than enough to form a complete cell monolayer. It is necessary to allow the cells in serum-free media to sediment in the T75 flask (or other tissue culture plates) for approximately 30 minutes before counting cells using a hemacytometer. When cells in serum-free media are placed, for example, in a T7 tissue culture flask, a monolayer of cells will immediately begin to form on the bottom of the flask. This will dramatically decrease the number of cells in suspension that are available for plating.

    Note: Once a complete monolayer has formed on the plate, the rest of the cells will remain in suspension. Count these cells in suspension and the cells attached to the T75 flask can be discarded later.

Here is a complete sample protocol for PMA-induced ERK Activation in Suspension Cell Lines.

Check on the website pages on Tips for Using Cells in Suspension Cells for In-Cell ELISA Assays.

Fast, Cost-Effective Cell-Based Assays for Quantitative Cell Signaling Analysis

In-Cell Western Assay Kits for Quantitative Cell Signaling Analysis
The In-Cell Western™ Assay is an immunocytochemical assay that uses near-infrared fluorescence to detect and quantify proteins in fixed cells. Detecting proteins in their cellular context increases quantification precision. Proteins in fixed, cultured cells are detected directly in microplates, which yields higher throughput compared to Western blotting and eliminates typical Western blotting steps such as cell lysate preparation, electrophoresis, and membrane transfer. Using the In-Cell Western Assay kits, the cost per well for secondary screening is reduced to a fraction of the cost of typical screening methods. Watch an introductory webinar to In-Cell Western Assays.

The CellTag™ 700 Stain ICW Kits provide antibodies, blocking buffer, and CellTag 700 Stain to normalize well-to-well variations in cell number for forty 96-well plates or ten 384-well plates. Using protein stains reduces the cost per assay compared to performing the assay using two secondary antibodies. Any potential interference caused by using two antibodies is also eliminated.
Phospho-ERK Analysis with Sapphire700/DRAQ5 for Normalization

Additional Resources:

Other In-Cell Western Assay Protocols are available on our Technical Resources Library. Visit our In-Cell Western Application Pages for more examples of how researchers have used these immunocytochemical assays.

Updated February 18, 2015.

Use Quantitative Cell Signaling to Study Apoptosis

AGAIN with the quantitative cell signaling! YES! because it is so versatile!! I am sure you will find that this will become a valuable technique to use in your research.

This quantitative immunofluorescent assay – the one that we call an In-Cell Western™ (ICW) Assay – can be used to study a variety of mechanisms. Here is an example of an ICW used to study apoptosis.

As you may already know, there are two major apoptosis signaling pathways: the death receptor (extrinsic) pathway and the mitochondrial (intrinsic) pathway. Under most circumstances, activation of either pathway leads to proteolytic cleavage and activation of caspases, a family of cysteine proteases that act as common death effector molecules. The In-Cell Western Assay is a very helpful research tool for scientists who are quantifying cell signaling.

Time Course of Caspase-3 Activation in SP2 Cells Performed using an In-Cell Western Assay

Figure 1. Time course of caspase-3 activation in S2 cells. (A-C) In-Cell Western analysis of S2 cells treated with Actinomycin D (Act D) to induce apoptosis. Each time point was measured in triplicate and stained for anti-active-caspase-3 (A; green) and f-actin (B; red, stained with near-infrared fluorescent phalloidin). Panel C shows merged pseudocolor images. (D) Active-caspase-3 protein levels from (A) were quantified and normalized to f-actin levels in (B) for each time point. The active caspase-3:f-actin ratio at 0min Actinomycin D exposure was designated as 1, and all other ratios are shown relative to this value. Error bars represent the standard error of each independent measurement. Exposure of S2 cells to Actinomycin D increased the relative levels of active caspase-3 over time. Reprinted with permission from Bond, D.et al. Biol Proced Online. 10(1):20-28(2008).

Here is our complete apoptosis assay example protocol of the HeLa cellular response to anisomycin treatment (detailing the seeding, induction, and detection).