Journal Articles Citing Use of Odyssey® or Pearl® Imaging Systems and Near-Infrared Fluorescence

The following are 4 journal references citing the use of either Odyssey or Pearl Imaging Systems.

Affibody-DyLight Conjugates for in vivoAssessment of HER2 Expression by Near-Infrared Optical Imaging.

Zielinski R, M Hassan, I Lyakhov, D Needle, V Chernomordik, A Garcia-Glaessner, Y Ardeshirpour, J Capala and A Gandjbakhche
Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
PLoS ONE 7(7): e41016 (2012). doi:10.1371/journal.pone.0041016

The HER2/neu gene is overexpressed in ~20% of invasive breast carcinomas. in vivo assessment of HER2 levels would aid development of HER2-targeted therapies and perhaps assist in selection of appropriate treatment strategies. This study describes HER2-specific probes for in vivo monitoring of receptor levels by near-infrared (NIR) optical imaging. Affibody molecules were labeled with DyLight750 dye, and affinity and specificity were confirmed in vitro. in vivo, Affibody-DyLight probes accumulated in HER2-positive breast cancer xenografts, but not in HER2-negative xenografts.

Fluorescent images were acquired at different time intervals after probe injection.
Fluorescent images were acquired at different time intervals after probe injection. Mouse bearing BT-474 xenograft tumor was injected with 10 µg HER2-Affibody-DyLight750 conjugate. Images were acquired every second for 1 minute with Pearl Impulse Imager (LI-COR Biosciences). doi:10.1371/journal.pone.0041016.s004

Animals were imaged with a custom NIR fluorescence-lifetime imaging system. The Pearl® Impulse Imager (LI-COR Biosciences) was used to monitor real-time accumulation of the Affibody probe in HER2-positive tumors during very early time points. Probe was injected during image acquisition, and images were captured every second for 1 minute. Probe accumulation in the kidney first, followed by tumor accumulation. Tumor fluorescence could still be detected 5 days after probe injection. This Affibody conjugate is useful for preclinical monitoring of HER2 status, and may have clinical utility.

Disruption of Kv1.3 Channel Forward Vesicular Trafficking by Hypoxia in Human T Lymphocytes

AA Chimote, Z Kuras, and L Conforti
Departments of Internal Medicine and Molecular & Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
Journal of Biological Chemistry 287(3): 2055-67 (2012) DOI 10.1074/jbc.M111.274209

In solid tumors, hypoxia decreases immune surveillance. Kv1.3 channels on T lymphocytes are down-regulated by an unknown mechanism, inhibiting T cell function. The authors hypothesize that changes in membrane trafficking cause reduced expression of Kv1.3 at the cell surface. On-Cell Western cell based assays (Odyssey® Imager, LI-COR Biosciences) were extensively used to measure cell surface expression of Kv1.3.

Chronic hypoxia decreased cell surface expression of Kv1.3 in Jurkat cells. Inhibition of protein synthesis, degradation, or endocytosis did not block this effect. However, inhibition of forward trafficking in the trans-Golgi with brefeldin A (BFA) prevented hypoxia-induced reduction of Kv1.3 cell surface expression. Confocal microscopy confirmed retention of Kv1.3 in the trans-Golgi. Quantitative fluorescent Westerns (Odyssey Imager) demonstrated that expression of AP-1, which is required for clathrin-coated vesicle formation, is downregulated by hypoxia. These data indicate that chronic hypoxia disrupts clathrin-mediated forward trafficking of Kv1.3, thereby reducing immune surveillance by T cells.

Sequential Application of Anticancer Drugs Enhances Cell Death by Rewiring Apoptotic Signaling Networks

M Lee, A Ye, A Gardino, A Hheijink, P Sorger, G MacBeath, and M Yaffe
Dept of Biology, David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA.
Cell 149:780-794 (2012). doi: 10.1016/j.cell.2012.03.031

Historically, standard treatments for human malignancies have been single drug therapies that cause DNA damage. Systems-based approaches and network analysis are now being used to examine how signaling can be re-wired by drug treatments that target dynamic network states. This study suggests that the timing and order of administration of certain drug combinations increases treatment effectiveness. Lee et al. pre-treated cells with epidermal growth factor receptor (EGFR) inhibitors, prior to DNA-damaging chemotherapy drugs.

Pre-treatment with erlotinib (an EGFR inhibitor) sensitized triple-negative breast cancers (TNBCs) to the DNA damage agent doxorubicin, and cell death increased by nearly 500%. Sensitization occurred only if the drugs were given sequentially. Transcriptional, proteomic, and computational analysis of signaling networks showed that dynamic network re-wiring was responsible for sensitization. Quantitative Westerns (Odyssey Imager; high-density, 48-sample blots) were used to monitor systems-level signaling dynamics. Erlotinib treatment made cells more susceptible to DNA damage by reactivating an apoptotic pathway that had been suppressed.

Investigation of Ovarian Cancer Associated Sialylation Changes in N-linked Glycopeptides by Quantitative Proteomics

V Shetty, J Hafner, P Shah, Z Nickens, and R Philip
Immunotope, Inc., Doylestown, Pennsylvania, USA
Clinical Proteomics 9:10 (2012) doi:10.1186/1559-0275-9-10.

CA125 is currently used as a biomarker for ovarian cancer, but is ineffective for detection of early stage disease. Previous research indicates that the level of sialic acid in total serum of ovarian cancer patients is elevated. Based on that idea, the authors suggest using N-linked sialyated glycopeptides as potential targets for early stage ovarian cancer biomarker discovery.

Shetty et al. used Lectin-directed Tandem Lableing (LTL) and iTRAQ quantitative proteomics to investigate N-linked sialyated glycopeptides, and identified 10 that were up-regulated in serum from ovarian cancer patients. Quantitative Western blot analysis of lectin-enriched glycoproteins (Odyssey Imager) was used to confirm the proteomic analysis. In ovarian cancer, increased sialylation of haptoglobin, PON1, and Zinc-alpha-2-glycoprotein was observed. Cancer-specific sialylation of glycopeptides may be a target for biomarker discovery.

Check out some of our Publications Lists for:

Introducing the NEW Odyssey® CLx Infrared Imaging System!

The Best Just Got Better!

Western blotting and the Odyssey CLx
Placing a Western blot on the New Odyssey CLx Imaging System

We at LI-COR are SUPER proud to introduce the new Odyssey CLx Infrared Imaging System. It’s the next generation Odyssey Imager – you know, the one that’s been the industry-leading quantitative Western blot technology for over 10 years!

The Odyssey CLx retains ALL of the application versatility and functionality of the Odyssey Classic. PLUS it now uses a great new software to get you and your lab up and running fast. . .so you can image all of your near-infrared fluorescent data and PUBLISH!

Image Studio™ Software is an extremely simple and easy-to-use imaging software. It is compatible with Odyssey® CLx and Odyssey Fc Imaging Systems.

  • Easy to use – training for new users is fast and simple
  • Intuitive, application-driven ribbon interface
  • Includes nine different types of analysis, including Western blots, DNA gel documentation, and small animal imaging