Journal Articles Citing Use of Odyssey® or Pearl® Imaging Systems and Near-Infrared Fluorescence

The following are 4 journal references citing the use of either Odyssey or Pearl Imaging Systems.

Affibody-DyLight Conjugates for in vivoAssessment of HER2 Expression by Near-Infrared Optical Imaging.

Zielinski R, M Hassan, I Lyakhov, D Needle, V Chernomordik, A Garcia-Glaessner, Y Ardeshirpour, J Capala and A Gandjbakhche
Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
PLoS ONE 7(7): e41016 (2012). doi:10.1371/journal.pone.0041016

The HER2/neu gene is overexpressed in ~20% of invasive breast carcinomas. in vivo assessment of HER2 levels would aid development of HER2-targeted therapies and perhaps assist in selection of appropriate treatment strategies. This study describes HER2-specific probes for in vivo monitoring of receptor levels by near-infrared (NIR) optical imaging. Affibody molecules were labeled with DyLight750 dye, and affinity and specificity were confirmed in vitro. in vivo, Affibody-DyLight probes accumulated in HER2-positive breast cancer xenografts, but not in HER2-negative xenografts.

Fluorescent images were acquired at different time intervals after probe injection.
Fluorescent images were acquired at different time intervals after probe injection. Mouse bearing BT-474 xenograft tumor was injected with 10 µg HER2-Affibody-DyLight750 conjugate. Images were acquired every second for 1 minute with Pearl Impulse Imager (LI-COR Biosciences). doi:10.1371/journal.pone.0041016.s004

Animals were imaged with a custom NIR fluorescence-lifetime imaging system. The Pearl® Impulse Imager (LI-COR Biosciences) was used to monitor real-time accumulation of the Affibody probe in HER2-positive tumors during very early time points. Probe was injected during image acquisition, and images were captured every second for 1 minute. Probe accumulation in the kidney first, followed by tumor accumulation. Tumor fluorescence could still be detected 5 days after probe injection. This Affibody conjugate is useful for preclinical monitoring of HER2 status, and may have clinical utility.

Disruption of Kv1.3 Channel Forward Vesicular Trafficking by Hypoxia in Human T Lymphocytes

AA Chimote, Z Kuras, and L Conforti
Departments of Internal Medicine and Molecular & Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
Journal of Biological Chemistry 287(3): 2055-67 (2012) DOI 10.1074/jbc.M111.274209

In solid tumors, hypoxia decreases immune surveillance. Kv1.3 channels on T lymphocytes are down-regulated by an unknown mechanism, inhibiting T cell function. The authors hypothesize that changes in membrane trafficking cause reduced expression of Kv1.3 at the cell surface. On-Cell Western cell based assays (Odyssey® Imager, LI-COR Biosciences) were extensively used to measure cell surface expression of Kv1.3.

Chronic hypoxia decreased cell surface expression of Kv1.3 in Jurkat cells. Inhibition of protein synthesis, degradation, or endocytosis did not block this effect. However, inhibition of forward trafficking in the trans-Golgi with brefeldin A (BFA) prevented hypoxia-induced reduction of Kv1.3 cell surface expression. Confocal microscopy confirmed retention of Kv1.3 in the trans-Golgi. Quantitative fluorescent Westerns (Odyssey Imager) demonstrated that expression of AP-1, which is required for clathrin-coated vesicle formation, is downregulated by hypoxia. These data indicate that chronic hypoxia disrupts clathrin-mediated forward trafficking of Kv1.3, thereby reducing immune surveillance by T cells.

Sequential Application of Anticancer Drugs Enhances Cell Death by Rewiring Apoptotic Signaling Networks

M Lee, A Ye, A Gardino, A Hheijink, P Sorger, G MacBeath, and M Yaffe
Dept of Biology, David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA.
Cell 149:780-794 (2012). doi: 10.1016/j.cell.2012.03.031

Historically, standard treatments for human malignancies have been single drug therapies that cause DNA damage. Systems-based approaches and network analysis are now being used to examine how signaling can be re-wired by drug treatments that target dynamic network states. This study suggests that the timing and order of administration of certain drug combinations increases treatment effectiveness. Lee et al. pre-treated cells with epidermal growth factor receptor (EGFR) inhibitors, prior to DNA-damaging chemotherapy drugs.

Pre-treatment with erlotinib (an EGFR inhibitor) sensitized triple-negative breast cancers (TNBCs) to the DNA damage agent doxorubicin, and cell death increased by nearly 500%. Sensitization occurred only if the drugs were given sequentially. Transcriptional, proteomic, and computational analysis of signaling networks showed that dynamic network re-wiring was responsible for sensitization. Quantitative Westerns (Odyssey Imager; high-density, 48-sample blots) were used to monitor systems-level signaling dynamics. Erlotinib treatment made cells more susceptible to DNA damage by reactivating an apoptotic pathway that had been suppressed.

Investigation of Ovarian Cancer Associated Sialylation Changes in N-linked Glycopeptides by Quantitative Proteomics

V Shetty, J Hafner, P Shah, Z Nickens, and R Philip
Immunotope, Inc., Doylestown, Pennsylvania, USA
Clinical Proteomics 9:10 (2012) doi:10.1186/1559-0275-9-10.

CA125 is currently used as a biomarker for ovarian cancer, but is ineffective for detection of early stage disease. Previous research indicates that the level of sialic acid in total serum of ovarian cancer patients is elevated. Based on that idea, the authors suggest using N-linked sialyated glycopeptides as potential targets for early stage ovarian cancer biomarker discovery.

Shetty et al. used Lectin-directed Tandem Lableing (LTL) and iTRAQ quantitative proteomics to investigate N-linked sialyated glycopeptides, and identified 10 that were up-regulated in serum from ovarian cancer patients. Quantitative Western blot analysis of lectin-enriched glycoproteins (Odyssey Imager) was used to confirm the proteomic analysis. In ovarian cancer, increased sialylation of haptoglobin, PON1, and Zinc-alpha-2-glycoprotein was observed. Cancer-specific sialylation of glycopeptides may be a target for biomarker discovery.

Check out some of our Publications Lists for:

Monitor Protein Levels and Phosphorylation with Quantitative Multiplexed Western Blots

Molecular profiling reveals diversity of stress signal transduction cascades in highly penetrant Alzheimer’s disease human skin fibroblasts.

Mendonsa, G., et al. PLoS ONE 4(2): e4655. doi:10.1371/journal.pone.0004655

Aberrant signal transduction is associated with Alzheimer’s disease (AD). In skin fibroblasts of AD patients, exaggerated signal transduction occurs in response to bradykinin (BK), an inflammatory neuropeptide. BK-induced PKC signaling causes stimulation of tau phosphorylation on serine residues in AD fibroblasts, but not in normal skin fibroblasts. Quantitative Western blotting with multiplex fluorescent detection (Odyssey Imager; LI-COR Biosciences) was used to monitor protein levels and phosphorylation.

To explore the roles of inflammatory and oxidative stress in AD pathology, this study profiled the effects of these stresses on MAPK signaling cascades in human skin fibroblasts of familial AD patients. AD fibroblasts of different genetic origins express presenilin (PS-1 or PS-2) mutated at a variety of sites. These mutations caused diverse responses to stress induced by BK or H2O2, with unique profiles of stress-induced MAPK activation, caspase-3 cleavage, and survival pathway activation. These results indicate that AD research must consider a broad spectrum of inflammatory, oxidative, and other stress factors and intracellular signaling responses.
Reduced ERK activation in PS-1 (M146L) Alzheimer's disease fibroblasts stimulated with bradykinin.

Figure 1. Reduced ERK activation in PS-1 (M146L) Alzheimer’s disease fibroblasts stimulated with bradykinin (BK). These fibroblasts carry a mutation in presenilin-1 associated with aberrant signaling. Mutant and control human skin fibroblasts were treated with 250 nM BK and immunoblotted for active and total ERK. Odyssey Imager was used, and fold activation was quantified. Total ERK is shown in green, and phospho-ERK in red; overlapping signals (active ERK) are shown in yellow. ERK activation was greatly reduced in PS-1 (M146L) AD fibroblasts. Graphs show mean + S.E. *p < 0.05 and **p < 0.005; n = 4. doi:10.1371/journal.pone.0004655