Possible Cause 10 for Weak Chemiluminescent Western Blot Signals: Diluting Substrates

westernsure-premium-926-95000Okay, I know, research budget money is tight and you want to make your reagents stretch as far as possible, but it really not a good idea to dilute your chemiluminescent Western blotting substrate.

Why? It’s because the rate of reaction is determined by the ratio of enzyme to substrate. Diluting substrates will dramatically impact the overall generation of light. Then, you will have to repeat the experiment, and you end up using more substrate anyway!

Optimal Blot Unsatisfactory Blot
Images Optimal Western Blot - Substrate Not Diluted Unsatisfactory Chemiluminescent Western Blot - Substrate Diluted
Conditions:
Substrate SuperSignal® West Dura1 SuperSignal® West Dura1
Substrate NOT diluted. Substrate diluted 1:1 (in water)
Performance LOD – 1.25 µg LOD – 2.5 µg

1Comparable to WesternSure® PREMIUM Chemiluminescent Substrate

So don’t skimp – use the substrate full strength the first time to ensure that you are seeing all of your protein bands. Or you might just have to repeat the experiment (and that will just cost you more time and money. . .)!

Here are the other nine possible causes of weak chemiluminescent Western blot signals:

Don’t Rush Substrate Incubation Time for Chemiluminescent Western Blots

Substrate Incubation Time is Important!Five minutes can seem like a long time, especially when you are waiting to image your chemiluminescent Western blot. But it is really important that you follow the manufacturer’s recommendation for incubation time. Typically, this is five (5) minutes for optimal photon emission – for both film and digital imaging.

So, set the timer for 5 minutes, grab your iPhone® or iPod® – or the crossword, and relax until the buzzer goes off.

To test this, we imaged a chemiluminescent Western blot immediately after adding the chemiluminescent substrate and then imaged a blot where we waited 5 minutes – answered a few emails, looked at the news, and downloaded a new app – and THEN imaged the Western blot. As you can see, incubating allowed us to see more bands and gave much better Western blotting results.

Optimal Blot Unsatisfactory Blot
Images Optimal Blot - 5 Min Substrate Incubation Unsatisfactory Blot - No Incubation
Conditions:
Substrate SuperSignal® West Pico SuperSignal® West Pico
Incubated for 5 minutes No incubation
Substrate at room temperature Substrate at room temperature
Performance LOD – 2.5 µg LOD – 5 µg

So slow down, take a breath, and wait for your chemiluminescent Western blot substrate to incubate on your Western blot before imaging.

Here are some other blog posts on possible causes of weak chemiluminescent Western blot signals:

iPhone and iPod are all registered trademarks of Apple Inc.

If Comparing Film and Digital Imagers, Expose Blot on Digital Imager First.

If you are trying to compare how the same chemiluminescent Western blot looks when imaged on a digital imager (like the C-DiGit® Blot Scanner) with how it will look when imaged on film, it’s important to know that you should expose the blot to film BEFORE imaging on a digital imager.

Why does this matter? Digital imaging requires capturing the most photons being generated, which is typically immediately after a 5-minute chemiluminescent substrate incubation. Time may be more of an issue with some substrates. For more information on how film and digial imaging compare, read Western Blot Analysis: Comparison of film and the C-DiGit Blot Scanner.

In Table 1 below, performance differences of a Western blot detected with SuperSignal® West Pico when the same blot is imaged over time. Blot was incubated 5 min in substrate before imaging on the C-DiGit Blot Scanner. Images are normalized to the LUT of the optimal blot.

Table 1 Optimal Blot Unsatisfactory Blot Unsatisfactory Blot
Images Optimal Blot with SuperSignal West Pico Unsatisfactory Blot with West Pico Unsatisfactory Blot with West Femto
Conditions: Immediately after incubation with SuperSignal West Pico 26 min after incubation 51 min after incubation
Imaging Time Immediately after incubation with SuperSignal® West Pico 26 min after incubation 51 min after incubation
Scan Setting High High High
Performance LOD – 625 ng, Signal – 338 LOD – 625 ng, Signal – 114 LOD – 625 ng, Signal – 32.2

In Table 2, Performance differences of a Western Blot detected with SuperSignal West Dura1 when the same blot is imaged over time. Blot was incubated 5 min in substrate before imaging on the C-DiGit Blot Scanner. Images are normalized to the LUT of the optimal blot.

Table 2 Optimal Blot Satisfactory Blot Satisfactory Blot
Images Optimal with West Dura Satisfactory with West Dura Satisfactory with West Dura
Conditions:
Imaging Time Immediately after incubation with SuperSignal West Dura 24 min after incubation 48 min after incubation
Scan Setting High High High
Performance LOD – 156 ng, Signal – 12,300 LOD – 156 ng, Signal – 10,400 LOD – 156 ng, Signal – 9,090

In Table 3, Performance differences of a Western Blot detected with SuperSignal West Femto when the same blot is imaged over time. Blot was incubated 5 min in substrate before imaging on the C-DiGit Blot Scanner. Images are linked to the LUT of the optimal blot.

Table 3 Optimal Blot Satisfactory Blot Satisfactory Blot
Images Optimal Blot with West Femto Satisfactory Blot with West Femto Satisfactory Blot with West Femto
Conditions:
Imaging Time Immediately after incubation with SuperSignal West Femto 24 min after incubation 48 min after incubation
Scan Setting High High High
Performance LOD – 156 ng, Signal – 11,500 LOD – 156 ng, Signal – 8,120 LOD – 156 ng, Signal – 6,860

1Comparable to WesternSure® PREMIUM Chemiluminescent Substrate

Related posts:

Good Western Blot Image Signal Acquisition Relies on Uniformly Wet Western Blots

Have you discovered the cause of the weak signals from your chemiluminescent Western blot yet? Well, let’s keep going. Here is another possible cause – the uniform wetness of the blot. It’s important to keep your Western blot membrane uniformly wet during the entire Western blot image acquisition.

Why does this matter? Well, if you don’t add enough substrate, the membrane will not stay wet, and there will be no enzymatic activity. And, that means no signal to detect.

Precaution/Solution:

  • Use more substrate prior to imaging
  • Do not completely blot off all of the substrate before imaging

For C-DiGit® Blot Scanner:

  • Wrap the blot in plastic wrap or cover with a plastic sheet protector
  • Incubate blot with substrate directly on scanner bed

Below is a table showing results of an experiment in which blots of varying degrees of wetness were imaged. You can clearly see that the wet blot and the damp blot give the best results. For both, the blots were protected from drying out by using a 1-ply sheet protector that was placed on top of the blot.

Optimal Blot Optimal Blot Unsatisfactory Blot
Images Optimal Chemiluminescent Wet Blot Optimal Chemiluminescent Damp Blot Unsatisfactory Image
Conditions: Wet blot Damp blot Dry blot
Imaging Method Imaged in 3.0 mL of SuperSignal® West Dura1 substrate placed on the scan bed of the C-DiGit Blot Scanner with 1-ply sheet protector on top. Excess SuperSignal® West Dura1 substrate removed, then imaged on the scan bed of the C-DiGit Blot Scanner with 1-ply sheet protector on top. Blot dried before imaging.
Performance LOD – 640 ng LOD – 640 ng LOD – None detected

1SuperSignal West Dura results are comparable to those obtained with WesternSure® PREMIUM Chemiluminescent Substrate.

We still have 5 more possible causes of weak signals in chemiluminescent Western blots to review, so stay tuned to future blog posts. And if you would like to try some FREE Western Blot Analysis Software, download Image Studio™ Lite today!

Watch this short video to see how to correctly place a Western blot on the C-DiGit Blot Scanner surface.

Related posts:

Troubleshooting Chemiluminescent Western Blots: Possible Cause 4 for Weak Signals – Blot Processing

Sometimes life in the lab gets crazy, right? You are finishing a Western blot and you realize that you are supposed to be at an important lecture across campus in 10 min!! Or, your spouse calls to say that one of the kids needs to be picked up as soon as possible. Yikes! The challenge is that blots should be processed and detected on the same day. And, the secondary antibody should be incubated the day of imaging and fresh substrate added just before imaging. Is it that important to your results? Yes, it is and just to prove it, we did a few experiments.

In Table 1, we studied performance differences when the same blot is imaged immediately after processing vs. stored overnight dry and then imaged. In Table 2, we looked at performance differences when the same blot is imaged immediately after processing vs. stored overnight wet and then imaged. Blots in both tables were all imaged on the C-DiGit® Blot Scanner. (And, all images are normalized to the Lookup Tables (LUT) of the respective optimal blot.)

For both experiments, you can see that saving the blot to image the next day is not a very good choice. This is because the secondary antibody and/or the chemiluminescent Western blot substrate is not stable enough for acceptable photon emission when digitally images after the day it is applied.

Table 1 Optimal Blot Unsatisfactory Blot Unsatisfactory Blot
Images Optimal Chemiluminescent Western Blot Unsatisfactory Chemiluminescent Western Blot Unsatisfactory Chemiluminescent Western Blot
Conditions:
Substrate SuperSignal® West Dura1 SuperSignal West Dura1 SuperSignal West Dura1
Processing Time Same Day Next Day Next Day
Detection Process HRP secondary incubated, washed, and substrate added immediately before imaging. HRP secondary incubated, washed, and substrate added day before imaging. HRP secondary incubated, washed, and substrate added day before imaging, then re-incubated with HRP secondary and substrate added immediately before imaging.
Storage Conditions Blot stored overnight dry, at room temperature Blot stored overnight dry, at room temperature
Performance LOD – 640 ng LOD – None detected LOD – 1.25 μg
Table 2 Optimal Blot Unsatisfactory Blot Unsatisfactory Blot
Images Optimal Chemiluminescent Western Blot Unsatisfactory Optimal Chemiluminescent Western Blot Unsatisfactory Optimal Chemiluminescent Western Blot
Conditions:
Substrate SuperSignal® West Dura1 SuperSignal West Dura1 SuperSignal West Dura1
Process Time Same day Next day Next day
Detection Process HRP secondary incubated, washed, and substrate added immediately before imaging. HRP secondary incubated, washed, and substrate added day before imaging. HRP secondary incubated, washed, and substrate added day before imaging, then re-incubated with HRP secondary and substrate added immediately before imaging.
Storage Conditions Blot stored overnight wet in PBS, at room temperature Blot stored overnight wet in PBS, at room temperature
Performance LOD – 640 ng LOD – None detected LOD – 1.25 μg

1SuperSignal West Dura results are comparable to those obtained with WesternSure® PREMIUM Chemiluminescent Substrate.

For more hints and tips, stay tuned to future blog posts. And if you would like to try some FREE Western Blot Analysis Software, download Image Studio™ Lite today!

Related posts:

Weak Signals on Chemiluminescent Westerns: Possible Cause 2 – Not Enough Substrate

The amount of chemiluminescent Western blot substrate you use can make a big difference in the results that you get. If you do not add enough substrate to your blot, the light-generating luminol will be depleted, leading to fewer photons (light) being released. (For more information on light collection and the chemiluminescent reaction, read “Imaging Chemiluminescence by Scanning“.)

Below are the results of an experiment where we looked at the performance differences when incubating the blot in different volumes of SuperSignal® West Pico. The three blots have the same LOD (2.5 μg/well); however, signal intensity varies. Blots were all imaged on the C-DiGit® Blot Scanner. lmages are normalized to the LUT (Lookup Table) of the optimal blot. (Read more about Image Studio™ Software or download FREE Image Studio Lite Western Blot Analysis Software.)

Optimal Blot Satisfactory Blot Unsatisfactory Blot
Images Optimal Blot for Substrate Amount Use Chemiluminescent Western showing Satisfactory Results for Substrate Amount Used Unsatisfactory Chemiluminescent Western blot results with low signal
Conditions:
Substrate SuperSignal West Pico SuperSignal West Pico SuperSignal West Pico
Substrate Volume 3.0 mL substrate 1.5 mL substrate 0.75 mL substrate
Imaging Method
  • Substrate placed directly on C-DiGit Blot Scanner glass surface.
  • Membrane placed on substrate, 1-ply sheet protector on top, incubate 5 min.
  • Substrate placed directly on C-DiGit Blot Scanner glass surface.
  • Membrane placed on substrate, 1-ply sheet protector on top, incubate 5 min.
  • Substrate placed directly on C-DiGit Blot Scanner glass surface.
  • Membrane placed on substrate, 1-ply sheet protector on top, incubate 5 min.
  • Scan Setting High High High
    Performance Bright signal Moderate signal Low signal

    For more hints and tips, stay tuned to future blog posts.
    Related posts:
    Weak Signals on Chemiluminescent Western Blots: Possible Cause 1 – Substrate Rate of Reaction

    Weak Signals on Chemiluminescent Western Blots: Possible Cause 1 – Substrate Rate of Reaction

    Optimal Chemiluminescent Western BlotAre you seeing weak signal in your chemiluminescent Western blot data? As we pointed out in a previous blog post, there are 10 possible reasons why this may be happening. Here is the first in our series on the causes and possible solutions/prevention measures you can try to get the best Western blot imaging data you can from your digital imager! We used our Odyssey® Fc Dual-Mode Imaging System and the newest member of our imaging family, the C-DiGit® Blot Scanner, in these studies.

    Possible cause 1: Substrate rate of reaction is not fast enough (e.g., SuperSignal® West Pico)

    Solution: Use WesternSure® PREMIUM or SuperSignal West Femto substrates

    Why this matters: Different substrates have different rates of reaction. Some are developed to give off a lot of light quickly; others give off small amounts of light over longer periods of time. An alternate substrate may be required for digital imaging when imaging blots with low protein abundance.

    Performance differences of three different substrate classifications using C-DiGit® Blot Scanner. All images are normalized to the Lookup Table (LUT) settings of the optimal blot for accurate visual comparison. (Learn more about easy-to-use Image Studio™ Software.)

    Optimal Blot Satisfactory Blot Unsatisfactory Blot
    Images Optimal Chemiluminescent Western Blot Satisfactory Chemiluminescent Western Blot Unsatisfactory Chemiluminescent Western Blot
    Conditions:
    Substrate SuperSignal West Femto SuperSignal West Dura1 SuperSignal West Pico
    Substrate Volume 3.0 mL substrate 3.0 mL substrate 3.0 mL substrate
    Imaging Method
  • Substrate placed directly on C-DiGit Blot Scanner glass surface.
  • Membrane placed on substrate, 1-ply sheet protector on top, incubate 5 min.
  • Substrate placed directly on C-DiGit Blot Scanner glass surface.
  • Membrane placed on substrate, 1-ply sheet protector on top, incubate 5 min.
  • Substrate placed directly on C-DiGit Blot Scanner glass surface.
  • Membrane placed on substrate, 1-ply sheet protector on top, incubate 5 min.
  • Scan Setting High High High
    Performance LOD – 78 ng LOD – 312 ng LOD – 2.5 μg

    1Comparable to WesternSure PREMIUM Chemiluminescent Substrate

    If you want to read ahead and find out ways to eliminate or avoid the other 9 causes of weak signals on chemiluminescent Western blots, read Good Westerns Gone Bad: Maximizing Sensitivity on Chemiluminescent Western Blots. Otherwise, stay tuned for more posts right here!

    10 Possible Causes of Weak Signals on Chemiluminescent Western Blot Images

    Weak Signals on Chemiluminescent Western BlotsAre you seeing weaker than expected (hoped for. . .) signal on your chemiluminescent Western blot images with your digital imager? Not sure what could be causing this? Well, here is a list of 10 possible reasons why you might be seeing weak signals in chemiluminescent Western blot data:

    1. The chemiluminescent substrate does not have a fast enough rate of reaction.
    2. Not enough substrate was added to the blot.
    3. Membrane was placed on the detection system incorrectly.
    4. Blot was not detected or processed on the same day it was imaged.
    5. Blot was not kept uniformly wet during the entire image acquisition.
    6. Blot was exposed to film BEFORE imaging on a digital imager.
    7. Blot was imaged using incorrect sensitivity setting (learn about the easy-to-use Image Studio™ Software. Try FREE Image Studio Lite Western Blot Analysis Software to see just how easy it is!)
    8. Chemiluminescent substrate was too cold.
    9. Chemiluminescent substrate was not incubated for 5 minutes.
    10. Substrate was diluted.

    Hum, that’s quite a list! For details on ways to eliminate or avoid these causes and get great results with your chemiluminescent Western blots, read Good Westerns Gone Bad: Maximizing Sensitivity on Chemiluminescent Western Blots.