Measurements of Methane Flux Using a Fast Open-Path Analyzer

G. Burba¹, T. Anderson¹, D. McDermitt¹, D. Zona², and J. Schedlbauer³

¹ Department of Biological Sciences, California State University, Chico, CA 95929, USA. ² Department of Geology, Florida State University, Tallahassee, FL, USA. ³ Department of Environmental Science, California State University, Los Angeles, CA 90032, USA.

Introduction

Methane is an important greenhouse gas that has a warming potential about 23 times that of CO₂ over 100-year cycle (Houghton et al., 2001). Measurements of CH₄ fluxes from the terrestrial biosphere have mostly been made using flux chambers, which are discrete in time and space, and may disturb surface integrity and air pressure. Open-path analyzers offer a number of advantages for measuring CH₄:

- undisturbed in-situ flux measurements
- spatial integration using the Eddy Covariance approach
- zero frequency response errors due to tube attenuation
- confident water and thermal density terms from co-located standard fast measurements of water and sonic temperature
- remote deployment due to lower power demand without a pump

CH₄ flux co-spectra

Ensemble averaged normalized daytime co-spectra plotted versus non-dimensional frequency are shown for contrasting ecosystems and setups in the three figures below. In all cases methane co-spectra behaved in a manner similar to the co-spectra of CO₂, H₂O, and air temperature, demonstrating that the prototype open-path methane analyzer adequately measured fluctuations in CH₄ concentration across the whole spectrum of frequencies that contributed to turbulent transport. All the co-spectra also closely followed the Karjal model (Karjal et al., 1972), and demonstrated good agreement with another methane co-spectrum obtained with a TDL (Unisearch Associates, Inc.) over peatland (Verma et al., 1992).

CH₄ concentrations and fluxes

Examples of hourly CH₄ concentrations and fluxes are shown in the top three figures below. The fourth figure demonstrates longer-term CH₄ emissions integrated over daytime from November, 2007, through January, 2008, in a sawgrass wetland, alongside mean air temperature. Overall, hourly CH₄ fluxes ranged from near-zero at night to about 4 mg m⁻² h⁻¹ in an arctic tundra (Zona et al., 2008) and Pacific mangroves (not shown), and to 2.5 mg m⁻² h⁻¹ in a sawgrass wetland.

Summary and Conclusions

- Open-path measurements of CH₄ flux using Eddy Covariance approach were conducted in 3 contrasting ecosystems:
 - sawgrass wetland, central Florida
 - arctic tundra
 - Pacifc mangroves

- In all 3 experiments, the shape of CH₄ flux co-spectra was close to those of CO₂, H₂O, and spectral heat fluxes.

- CH₄ concentration ranged 1.1-1.6 mg m⁻³ with hourly variations close to those observed in similar ecosystems.

- Hourly fluxes ranged from near-zero at night to about 4 mg m⁻² h⁻¹ at midnight in the arctic tundra.

- Diurnal patterns were similar to those measured by closed-path sensors (Kim et al., 1998; Hendriks et al., 1999).

- Open-path analyzer is a valuable tool for measuring long-term eddy fluxes of CH₄ due to its good frequency response and undisturbed in-situ sampling.

Acknowledgements

The authors wish to thank support provided by the US Naval Research Laboratory, Florida Atmospheric, Oceanic, and Space Science Conferences, and numerous colleagues involved in measurements, logistics and maintenance of the experimental field sites.

References

Acknowledgements

The authors wish to thank support provided by the US Naval Research Laboratory, Florida Atmospheric, Oceanic, and Space Science Conferences, and numerous colleagues involved in measurements, logistics and maintenance of the experimental field sites.

Instrument description

The prototype open-path methane analyzer (OPA) is a VCSEL laser-based instrument employing an open flow cell design. Field maintenance is minimized by a self-cleaning mechanism (bottom) to keep the lower mirror free of contamination.

Sites and Experiments

Eddy Covariance measurements of CH₄ flux using the prototype methane analyzer were conducted in 2006-2008 at three ecosystems with contrasting weather and moisture conditions:

- Fluxes over short-hydroperiod sawgrass wetland in Florida Everglades were measured in warm and humid conditions with temperatures often exceeding 27°C, with variable winds, and heavy dew at night.
- Experiment in an Arctic tundra described fluxes over coastal wetlands with frequent sub-zero temperatures, mist, and moderate winds.
- Fluxes over Pacific mangroves in Mexico were measured in conditions of high winds, sea spray, and moderate air temperatures.

Acknowledgements

The authors wish to thank support provided by the US Naval Research Laboratory, Florida Atmospheric, Oceanic, and Space Science Conferences, and numerous colleagues involved in measurements, logistics and maintenance of the experimental field sites.

This project was supported by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer Programs (STTR) of the Department of Energy (DOE), Grant Numbers DE- FG02-03ER83782 and DE-SC0017285.