Looking for manuals, software, or help with the LI-6800?

Visit the technical support center for software, operating instructions, videos, and tips.

Support Center

Brochures

Publications

Ashe, P., Shaterian, H., Akhov, L., Kulkarni, M., & Selvaraj, G. (2017). Contrasting root and photosynthesis traits in a large-acreage Canadian durum variety and its distant parent of Algerian origin for assembling drought/Heat tolerance attributes. Frontiers in Chemistry, 5(121). https://doi.org/10.3389/fchem.2017.00121

Caine, R. S., Yin, X., Sloan, J., Harrison, E. L., Mohammed, U., Fulton, T., Biswal, A. K., Dionora, J., Chater, C. C., Coe, R. A., Bandyopadhyay, A., Murchie, E. H., Swarup, R., Quick, W. P., & Gray, J. E. (2018). Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist, 221(1), 371–384. https://doi.org/10.1111/nph.15344

Cruz, J. A., & Avenson, T. J. (2021). Photosynthesis: A multiscopic view. Journal of Plant Research, 134, 665-682. https://doi.org/10.1007/s10265-021-01321-4

Dutt, M., Zambon, F. T., Erpen, L., Soriano, L., & Grosser, J. (2018). Embryo-specific expression of a visual reporter gene as a selection system for citrus transformation. PLoS ONE, 13(1), e0190413. https://doi.org/10.1371/journal.pone.0190413

Evans, J. R., Morgan, P. B., & Von Caemmerer, S. (2017). Light quality affects chloroplast electron transport rates estimated from Chl fluorescence measurements. Plant Cell Physiology, 58(10), 1652-1660. https://doi.org/10.1093/pcp/pcx103

Guha, A., Han, J., Cummings, C., McLennan, D. A., & Warren, J. M. (2018). Differential ecophysiological responses and resilience to heat wave events in four co-occurring temperate tree species. Environmental Research Letters, 13(6), 065008. https://doi.org/10.1088/1748-9326/aabcd8

Guha, A., Vharachumu, T., Khalid, M. F., Keeley, M., Avenson, T. J., & Vincent, C. (2021). Short‐term warming does not affect intrinsic thermotolerance but induces strong sustaining photoprotection in tropical Evergreen citrus genotypes. Plant, Cell & Environment. https://doi.org/10.1111/pce.14215

Johnson, J. E., & Berry, J. A. (2021). The role of cytochrome b6f in the control of steady-state photosynthesis: A conceptual and quantitative model. Photosynthesis Research, 148, 101–136. https://doi.org/10.1007/s11120-021-00840-4

Muñiz García, M. N., Cortelezzi, J. I., Fumagalli, M., & Capiati, D. A. (2018). Expression of the Arabidopsis ABF4 gene in potato increases tuber yield, improves tuber quality and enhances salt and drought tolerance. Plant Molecular Biology, 98(1-2), 137-152. https://doi.org/10.1007/s11103-018-0769-y

Reeves, G., Singh, P., Rossberg, T. A., Deedi Sogbohossou, E. O., Eric Schranz, M., & Hibberd, J. M. (2018). Quantitative variation within a species for traits underpinning C4 photosynthesis. bioRxiv. https://doi.org/10.1101/253211

Shi, W., Cheng, J., Wen, X., Wang, J., Shi, G., Yao, J., Hou, L., Sun, Q., Xiang, P., Yuan, X., Dong, S., Guo, P., & Guo, J. (2018). Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.). PeerJ6:e4752. https://doi.org/10.7287/peerj.preprints.26860v1

Slot, M., Krause, G. H., Krause, B., Hernández, G. G., & Winter, K. (2018). Photosynthetic heat tolerance of shade and sun leaves of three tropical tree species. Photosynthesis Research 141(1), 119–130. https://doi.org/10.1007/s11120-018-0563-3

Stinziano, J. R., Morgan, P. B., Lynch, D. J., Saathoff, A. J., McDermitt, D. K., & Hanson, D. T. (2017). The rapid A-Ci response: Photosynthesis in the phenomic era. Plant, Cell & Environment, 40(8), 1256-1262. https://doi.org/10.1111/pce.12911

Taylor, S. H., & Long, S. P. (2017). Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1730), 20160543. https://doi.org/10.1098/rstb.2016.0543

Urban, L., Aarrouf, J., & Bidel, L. P. (2017). Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll a fluorescence. Frontiers in Plant Science, 8(2068). https://doi.org/10.3389/fpls.2017.02068

Training Courses

Photosynthesis training courses are offered throughout the year at various locations around the world. Courses provide information on instrument use, theory, data processing, maintenance, and related topics.

Register early, as class sizes are limited and fill quickly. LI‑COR reserves the right to cancel a session 3 weeks prior.

Courses are designed for users who have little or no experience with the LI‑6800 or LI-6400/XT, but may also be useful as a refresher for users with more experience. Some of the topics covered during the courses include:

  • Fundamentals of making gas exchange and fluorescence measurements
  • LI-6800 and LI‑6400/XT hardware and software introduction
  • Environmental control
  • Making survey and response curve measurements
  • Maintenance, calibration and troubleshooting

Additional Information

Attendees are responsible for their own travel, lodging, and other meal expenses. LI-COR has negotiated a special rate with a hotel and will make reservations for attendees. Attendees are responsible for providing their own payment information at check-in. Attendees must bring their own instrument to the course.

Register for Photosynthesis Training

Cost: The Photosynthesis Training Course is available at no charge with the purchase of a LI-6800. Contact LI-COR.

Once you sign up for a session, a training coordinator will contact you with your confirmation and provide additional information. If you have any questions about training before you register, please contact us.


When you complete this form your information is received by LI-COR Inc (United States) and shared with its subsidiaries, LI-COR GmbH (Germany) and LI-COR Ltd (United Kingdom). LI-COR and its subsidiaries work closely together to provide scientific expertise and prompt responses to customers globally. Depending on your location, your information may also be shared with a distribution partner. For more details, view our Privacy Policy (www.licor.com/privacy) or contact privacy@licor.com.